Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK.
نویسندگان
چکیده
We report on the use of a radiation pressure induced restoring force, the optical spring effect, to optically dilute the mechanical damping of a 1 g suspended mirror, which is then cooled by active feedback (cold damping). Optical dilution relaxes the limit on cooling imposed by mechanical losses, allowing the oscillator mode to reach a minimum temperature of 6.9 mK, a factor of approximately 40 000 below the environmental temperature. A further advantage of the optical spring effect is that it can increase the number of oscillations before decoherence by several orders of magnitude. In the present experiment we infer an increase in the dynamical lifetime of the state by a factor of approximately 200.
منابع مشابه
Cooling of a Gram-Scale Cantilever Flexure to 70 mK with a Servo-Modified Optical Spring.
A series of recent articles have presented results demonstrating optical cooling of macroscopic objects, highlighting the importance of this phenomenon for investigations of macroscopic quantum mechanics and its implications for thermal noise in gravitational wave detectors. In this Letter, we present a measurement of the off-resonance suspension thermal noise of a 1 g oscillator, and we show t...
متن کاملFeedback cooling of a one-electron oscillator.
A one-electron oscillator is cooled from 5.2 K to 850 mK using electronic feedback. Novel quantum jump thermometry reveals a Boltzmann distribution of oscillator energies and directly measures the corresponding temperature. The ratio of electron temperature and damping rate (also directly measured) is observed to be a fluctuation-dissipation invariant, independent of feedback gain, as predicted...
متن کاملToward Quantum Opto-Mechanics in a Gram-Scale Suspended Mirror Interferometer
A new generation of interferometric gravitational wave detectors, currently under construction, will closely approach the fundamental quantum limits of measurement, serving as a prominent example of quantum mechanics at the macroscale. Simultaneously, numerous experiments involving micro-mechanical oscillators are beginning to explore the quantum regime, with the help of optical cooling techniq...
متن کاملSelf-excitation and feedback cooling of an isolated proton.
The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband cooled to a 14 mK theoretical limit, and despite random frequency shifts (typically larger than those...
متن کاملFeedback cooling of a cantilever's fundamental mode below 5 mK.
We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K down to 2.9+/-0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 99 16 شماره
صفحات -
تاریخ انتشار 2007